## MATERIAL COMPATIBILITY CHARTS HALOTRON $^{\mathrm{TM}}$ II FIRE EXTINGUISHING AGENT



| MATERIAL                   | ACCEPTABILITY | COMMENTS                                                                                     |
|----------------------------|---------------|----------------------------------------------------------------------------------------------|
| Elastomers                 |               |                                                                                              |
| Neoprene                   | 1             | Minimal swelling occurred and faired well under durability testing                           |
| EPDM                       | 1             | Minimal swelling and minimal change in hardness occurred                                     |
| Silicone                   | 1             | Minimal swelling occurred and minimal change in hardness occurred                            |
| Nitrile (Buna N)           | 2             | Minimal swelling occurred and minimal change in hardness occurred, some change in elasticity |
| Styrene Butadiene (Buna S) | 2             | Some swelling occurred and a slight change in elasticity occurred.                           |
| Natural Rubber             | 2             | Some swelling occurred and a slight change in elasticity occurred.                           |
| Fluorocarbon (Viton)       | 3             | Significant swelling occurred and found not to be durable                                    |
| Fluorosilicone             | 3             | Significant swelling occurred and found not to be durable.                                   |
| Adiprene                   | 3             | Significant swelling occurred and found not to be durable.                                   |
| Metals                     |               |                                                                                              |
| Aluminum                   | 1             | Found to be compatible in stress and corrosion studies                                       |
| Carbon Steel               | 1             | Found to be compatible in stress and corrosion studies                                       |
| Stainless Steel            | 1             | Found to be compatible in stress and corrosion studies                                       |
| Copper                     | 1             | Found to be compatible in stress and corrosion studies                                       |
| <b>Plastics</b>            |               |                                                                                              |
| ABS (Kralastic)            | 1             | Found to be have minimal softening, weight gain, and color change in exposure testing        |
| Acetal (Delrin)            | 1             | Found to be have minimal softening, weight gain, and color change in exposure testing        |
| PTFE (Teflon)              | 1             | Found to be have minimal softening, weight gain, and color change in exposure testing        |

| MATERIAL              | ACCEPTABILITY | COMMENTS                                                                              |
|-----------------------|---------------|---------------------------------------------------------------------------------------|
| Plastics (continued)  |               |                                                                                       |
| Polyamide (Zytel)     | 1             | Found to be have minimal softening, weight gain, and color change in exposure testing |
| Polycarbonate (Lexan) | 1             | Found to be have minimal softening, weight gain, and color change in exposure testing |
| Polyester (PBT, PET)  | 1             | Found to be have minimal softening, weight gain, and color change in exposure testing |
| Acrylic               | 3             | Found to cause softening and weight gain                                              |

- 1) Acceptable ratings convey the following:
  - 1= Material appears to be compatible over a range of conditions
  - 2= Material appears to be marginally compatible
  - 3= Material appears to be incompatible even for short periods of exposure to the agent because of excessive swelling, degradation, or corrosive effects.
- 2) Material compatibility is dependent on the environment where exposure to the agent takes place. Effects on specific elastomers depend on the characteristics of manufacture such as compound formulation, vulcanizing, and curing procedures. If prolonged exposure is anticipated, actual samples of specific parts should be tested before specifying elastomers for applications. Effects of agent exposure to metals and plastics can vary dramatically in high temperature or if excessive moisture is present.

THE INFORMATION AND RECOMMENDATIONS PROVIDED HERE ARE BASED ON CURRENTLY AVAILABLE DATA AND ARE SUBJECT TO CHANGE. THE OPINIONS CONTAINED HEREIN ON MATERIALS POTENTIALLY TO BE USED WITH THE PRODUCT ARE BASED ON NORMAL USE CONDITIONS. PLEASE SEE THE HALOTRON DIVISION MATERIAL SAFETY DATA SHEET ON THIS PRODUCT FOR OTHER HANDLING AND PROPER USE INFORMATION.